

Virtual Environment Lab (V-LAB) Southern Illinois University

Information Trails In Progress Assessment of Game-Based Learning

C. Sebastian Loh, Ph.D. csloh@siu.edu

HORIZON REPORT

- Games-based learning (GBL) the next new emerging technology to impact Higher Education
- Targetted as learning platform for all kind of learning/ training/ online interaction (military, corporate. higher education).

LEARNING & DOING

o Brown, Collins and Duguid (1989)

- Different instructional goals of "knowing what" and "know how"
 → different structures and practices of our education system
- DECONTEXTUALIZED: Learning is separated from Doing
 - "Activity and situations are integral to cognition and learning"
 - Cognitive apprenticeship can provide "the authentic practice through activity and social interaction in a way similar to that evident – and evidently successful – in craft apprenticeship."
- Game-Based Learning is a great example of Learning by Doing!
 - Authentic "ACTIVITIES" and situations story-based, social interactions with (non-)player characters

SITUATED COGNITION

- Knowledge, as a product of a meaning-making (decision-making) process, cannot be separated from the context of its use.
- Learning is a continuous, lifelong process from acting in situations.
- Tools (Game-based learning) and their use "reflect the particular accumulated insights of communities."
- "Given the chance to observe and practice *in situ* the behavior of members of a culture (or environment), people pick up relevant jargon, imitate behavior, and gradually start to act in accordance with its norms."

COGNITIVE APPRENTICESHIP

- Four Cognitive Apprenticeship Procedures:
- 1. By beginning with a task embedded in a familiar activity it shows the students the legitimacy of their implicit knowledge and its availability as scaffolding in apparently unfamiliar tasks.
- By pointing to different decompositions it stresses that heuristics are not absolute but assessed with respect to a particular task – and that even algorithms can he assessed in this way.
- 3. By allowing students to generate their own solution paths, it helps make them conscious creative members of the culture of problem-solving mathematicians.
- 4. It helps to enculturate students through this activity, acquire some of the culture's tools – a shared vocabulary and the means to discuss, reflect upon, evaluate and validate community procedures in a collaborative process.

LEARNING & ASSESSMENT

BLACK OR WHITE BOX

 Inclusion of an <u>assessment</u> components is the main difference distinguishing the more 'serious' games from the ones made for entertainment

- Chen and Michael (2005)
- Black Box vs. White Box
 - Pretest > Intervention > Posttest (Best method?)

DEMONSTRABLE ABILITIES

- Learners should be able to demonstrate the 'abilities' they have acquired from the course of instruction (Joosten-ten Brinke, Gorrisen, Latour, 2005)
- San the demonstration of the abilities learned, there are no means of knowing if the learners have learned anything
- Apart from testing (pretest/posttest), what else can you assess?
 - Israeli Air Force Study (Tobias, S.)

 Students who played Space Fortress
 had better rankings in their pilot training
 than students who did not.
 - Performance ranking...

CASE STUDY

• Serious game improves performance!!

- U.K. Royal Navy's Maritime Warfare School (MWS)
- Military recruits who failed to meet required BUTS standard must receive additional training
- This demands a considerable investment in additional training resources, cost and time off the job.

• Study Design:

- 10 classes played a new serious game aimed to teach the same skills
- The results was compared to a control group (taught by traditional method: instructor using book & powerpoint)
- Pre-existing course curriculum was severely ineffectual.

News Flash!

o First Study to prove effectiveness of Serious Games!

- BUTS measurement was taken over 10 classes, throughout the term (to determine the effectiveness of the serious game lesson in comparison to the traditional classroom teaching method).
- One more Media Comparison Studies

RECONSIDERING ASSESSMENTS

ASSESSMENT IN PHYSICAL ENVIRONMENTS

- Physical classrooms (physical = face-to-face)
- "Facial expressions and tell-tale physical/emotional behaviors" can be directly interpreted as evidence of learning and participation"
 - Harrington, Meisels, McMahon, Dichtelmiller, & Jablon, 1997
 - Body language, eye contact, facial expression, tone of voice, gesture signaling (dis)approval

SHIFT FROM PHYSICAL TO VIRTUAL ENVIRONMT.

ASSESSMENT IN VIRTUAL ENVIRONMENTS

- Virtual, non-physical classroom: Facial expressions, body language (Gone!)
- o Emote? (Second Life)
 - Will student fake their emote?
- How else can teachers assess learning?
 - Assessment = Mental Dipstick

Do You Know Where Is Your "Truck"?

- Media is 'a grocer truck' (mere vehicle)
- It just drives the learners to the destination....
- Even though they arrived.... Did they take a detour, or stop somewhere where they are not supposed to?
- We did not have the technology then, but we do now.

FORMATIVE & SUMMATIVE

o Formative (along the way)

- Quizzes, Assignment throughout a semester
- Take small 'tests' as they are doing GBL
- o Summative (at the end of learning period)
 - Finals at the end of a semester
 - Big 'Final' after the GBL period is over (can be 20-40 hours later) undesirable learning habits

DATA COLLECTION METHODS

Assessment Methods

- There are other data collection methods for software assessment
- o Friday, 2:15-3:15pm (East- Suite Tower / Wilson)
- Most educational research collect data and measuring performance (before and) after game-play (in a different environment)
 - Pen-and-paper Test \rightarrow Online test
 - Dependent on short-term memory
 - Interview, Talk-aloud, Self-reports: can be unreliable
 - Game log analysis (D.I.Y. approach, not for the uninitiated)

GAME LOG ANALYSIS... ANYONE?

• Item answered, % correct, final score...

• We need better metrics!

Game Data by Mission

SITE NAME	STUDENT NAME	USERNAME	DATE LOGGED IN	TIME ON TASK (MM:SS)	MISSION	LEVEL	TOPIC	SKILL	ITEM S AN SWERED	% CORRECT	FINAL SCORE
Washington MS	Armstrong, Louis	LArmstrong	8/25/2009 02:12 PM	05:05	Tower Storm	G - Middle	Measurement	Solve Proportions	2	0	0
Washington MS	Armstrong, Louis	LArmstrong	8/25/2009 02:18 PM	05:05	Tower Storm	G - Middle	Geometry	Classify Figures	5	60	500
Washington MS	Ellington, Edward	EEllington	8/25/2009 04:27 PM	05:05	Meltdown III	Algebra	Number and Operations	Simplify Radical Terms	3	67	150
Washington MS	Fitzgerald, Ella	EFitzgerald	8/19/2009 04:15 PM	05:04	Meltdown III	G - Middle	Number and Operations	Fractions/Decimals/Per	1	100	50
Washington MS	Fitzgerald, Ella	EFitzgerald	8/19/2009 04:44 PM	15:05	Tower Storm	G - Middle	Number and Operations	Random Mix	13	85	1500
Washington MS	Fitzgerald, Ella	EFitzgerald	8/20/2009 03:57 PM	05:05	Meltdown III	G - Middle	Number and Operations	Random Mix	3	100	450
Washington MS	Fitzgerald, Ella	EFitzgerald	8/20/2009 04:14 PM	16:52	Obstacle Course III	G - Middle	Measurement	Random Mix	16	88	1000
Washington MS	Fitzgerald, Ella	EFitzgerald	8/19/2009 04:39 PM	09:28	Tower Storm	G - Middle	Number and Operations	Compare Numbers	7	71	500
Washington MS	Fitzgerald, Ella	EFitzgerald	8/19/2009 04:15 PM	05:04	Meltdown III	G - Middle	Number and Operations	Fractions/Decimals/Per	2	100	300
Washington MS	Monk, Thelonious	TMonk	8/25/2009 03:19 PM	05:05	Swarm III	G - Middle	Algebra	Translate to Alg.	1	100	100
Washington MS	Monk, Thelonious	TMonk	8/22/2009 03:41 PM	05:04	Meltdown III	G - Middle	Number and Operations	Properties of Addition	1	100	100
Washington MS	Monk, Thelonious	TMonk	8/19/2009 04:42 PM	12:13	Tower Storm	G - Middle	Number and Operations	Random Mix	6	83	500
Washington MS	Monk, Thelonious	TMonk	8/25/2009 03:12 PM	05:05	Meltdown III	G - Middle	Algebra	Random Mix	б	60	200
Washington MS	Monk, Thelonious	TMonk	8/25/2009 03:31 PM	05:04	Swarm III	D	Number and Operations	Random Mix	5	0	0
Washington MS	Monk, Thelonious	TMonk	8/25/2009 03:37 PM	03:03	Meltdown III	D	Number and Operations	Random Mix	5	40	150
Washington MS	Vaughn, Sarah	SVaughn	8/25/2009 02:20 PM	05:05	Meltdown III	G - Middle	Measurement	Equiv. Metric Units	2	0	0
Washington MS	Vaughn, Sarah	SVaughn	8/25/2009 03:12 PM	05:05	Meltdown III	G - Middle	Number and Operations	Estimate to Check	1	100	200
Washington MS	Vaughn, Sarah	SVaughn	8/25/2009 02:14 PM	02:12	Obstacle Course III	G - Middle	Measurement	Find Area/Volume	1	100	0
Washington MS	Vaughn, Sarah	SVaughn	8/25/2009 02:58 PM	04:25	Meltdown III	G - Middle	Number and Operations	Properties of Addition	1	100	200

IN SITU (IN PROCESS)

- o How about collecting data during the gameplay?
- In situ data collection (can be qualitative or quantitative)
 - No-tech Face-to-face classroom
- High tech, "In the field" data collection
 - During the Game-Based Learning process
- Game-based learning as a White-Box
 - Can see the variables, tinker with them, change variables to modify outputs
 - Understanding of programming process

1: USER-GENERATED DATA

Let's Get R Started 30 227 31

In-Process Data:

- **50** Tracking device placed/attached on participants
- As play-users play games, they generate data on-the-fly (while the game is still on-going)

Son GBL primarily 'train' through repetition

- Repetition is important for training muscle memory
- Matching of learning/training goals to outcomes (Eye-hand coordination, Choosing the right answer?)
- Verify that people indeed learned what they set out to learn
- Detection of anomaly: 'unexpected' user behaviors
 - Gaming the system? Bug? Truly innovative solution?

2: TELEMETRY (INSTRUMENTATION)

• Telemetry: Remotely collecting data, and transmitting the data back to a remote (central) server for analysis

- Transmitter > Receiver
- Tracking the moving agent (participant) in its habitat
- Found in car race, air plane, bio-habitat, truck tracking...

3/4: DATA VISUALIZATION

• Visualization of data for easy understanding (don't have to know statistics or read log files)

3/4: REPORTING TOOL

- Display raw data in a user-friendly report *in real-time* From telemetry to reporting
 - A report is need for stakeholders: students, trainers, administrator
- Learning Analytics?

INFORMATION TRAILS & PETRA (Performance Tracing Report Assistant)

INFORMATION TRAILS® SYSTEMS

FORMATIVE ASSESSMENT

- During the game, user actions may be traced remotely or locally in real-time using a browser (desktops/mobile devices)
 - Trainers can monitor progress of trainees from a remote location
 - Play-users can use the report as self-evaluation
 - Administrators can check on performance of individual or group for ROI analysis
 - Anytime anywhere access

SUMMATIVE ASSESSMENT

• After the game, we can compare play-users to his/her peers

- Identification of 'top' performers
- SD from expert performance level
- Compare play-users to his/her group
 - Identification of novice vs. expert
 - Predict category of play-user by how they react/do in certain GBL/training scenario

REAL-TIME PERFORMANCE TRACING

o Location 1

- Game + Telemetry
- Collection of usergenerated data
- in situ assessment

• Location 2

- Performance Tracing
- Visualization of usergenerated data
- Real-time Report

EXPERT VS NOVICE PERFORMANCE

Novice Behavior / Performance

- o Confused
- Don't know what to do
- Back tracking
- A lot of wastage (time)
- Highly inefficient behaviors
- Aimless wandering

EXPERT BEHAVIOR / PERFORMANCE

- Focused
- o Know what to do
- Do what is required
- Very little wastage (time)
- o Little/no back tracking
- Highly efficient behavior
- Purposeful actions

NOVICES VS. EXPERTS (PROFILE ANALYSIS)

- Expert vs. Novice performance 'graph'
- Performance efficiency
- Fewer steps taken
- Shorter time of completion

NOVICES VS. EXPERTS (PROFILE ANALYSIS)

- Anomalies (deviations) are extraneous actions not seen in expert behaviors
- May constitute manmade "mistake"
 - worth investigating

Virtual Environment Lab (V-LAB) Southern Illinois University

C. SEBASTIAN LOH, PH.D. DIRECTOR, VIRTUAL ENVIRONMENT LAB (V-LAB) LEARNING SYSTEMS DESIGN & TECHNOLOGY SOUTHERN ILLINOIS UNIVERSITY CARBONDALE, IL

CSLOH@SIU.EDU INFORMATIONTRAILS.COM, CSLOH.COM LINKEDIN.COM/IN/CSLOH