PERFORMANCE METRICS FOR SERIOUS GAMES: WILL THE (REAL) EXPERT PLEASE STEP FORWARD?

Abstract

- Human Performance literature shows behavioral differences between experts and novices
- Experts make decisions differently from novices (many years of practice to achieve mastery)
- Competency is a demonstrable attribute based on a person’s course of action in problem solving
- Telemetry: tracing people’s actions and behaviors (as user-generated data) remotely for performance assessment (web navigation, animal movement)
Experts vs Novices

- Very well-studied phenomenon in T&L & psychology
- Behavioral indicators vary widely
 - Ranging from ‘time-to-task completion’ rate, to mental representations of knowledge, to gaze patterns in scanning for information
- Observable & Measurable competency changes
 - Novices ← Competent Users → Experts
 - Novices follow rules (often blindly)
 - Experts (appear to) break/ignore rules at will (because they detect subtle cues that are not obvious to novices)
Serious Games

- Serious games: designed to support knowledge acquisition and/or skill development
- Entertainment ← Digital Games → Serious
 No ← Performance Assessment → Required
- ROI: Stakeholders (T&L industries) need “measurable evidence of training or learning”
- Gap in Literature: few know what to do
 - Thus far, sell games but not assessment reports
 - Industry have different criteria for assessment (really complicated if you are an educator)
Serious Games (for T&L) can provide training so that novices → competent users → experts

To satisfy the needs of stakeholders (for ROI)
- Need STANDARDIZED measurable Performance Metrics to quantify observable changes in competency
- Identify potential metrics
- Test for viability
- Incorporate as SErious Games Analytics (SEGA)
- A set of established performance metrics and industrial standards for measuring competency with SG
Considering Entertainment Games

- ‘Just-for-Fun’ mode
 - Why would you want to ‘performance assess’ me?

- Just for fun?
 - Burger eating competition, Drinking, Car race, etc.
 - Fun → Competition (still fun?)
Different Kind of Games/Players

[Graph showing frequency over time for different categories: Just-for-Fun, Competitive, Mastery.]

Population
Considering Competitive Games

- ‘Competition’ mode: BEST players (in....)
- Best against someone (PvP) \rightarrow glory and fame, Hall of Fame, Leader board
- Best against self (ghost car) \rightarrow self improvement
 - Best Time (of completion)
 - Best Route (of navigation) \rightarrow Trajectory-based
 - Best Utility (of ‘limited’ resources)
 - Best Collector (of badges)
 - Best Strategy \rightarrow Objective-based (combination of time, route, resources, etc.)
Best Strategy (Objective-Based)

- Combinations of Time, Route, Resources...
- Many combination
- To start examining the problem, we limit our scope to just the order of completion
 - If you need eggs, shower gel, and video game (how would you shop at Wal-Mart?)
 - Can include Time and Route (but not a must)
- Future: compared ORDER with TIME and/or ROUTE
Similiarity in Degree of Competency

- Since competency is characterized by an observable course of actions taken during problem solving.
- Are there differences between course of actions of experts vs novices?
- We compared how closely match the two sets of traces are against one another.
- We calculated the Similarity Index for each player and identified individuals whose performances approach/match that of the experts.

Novice (0) ← Similarity Index → (1) Experts
User-generated data can be collected using a variety of methods.

Information Trails (Loh, 2007), Game Telemetry (Zoeller, 2010)

- Remote Locale where interaction occurs (online)
- Event ‘Listener’
- Transmitter/Receiver
- Home base for database storage and analysis
 - Multiple data points (snowballing effect → massive)

Analytics → add visualization (reporting purpose)

Route-based Performance Metrics
String Similarity

- Statistical method devised to determine if two strings/records are similar enough to be duplicates in Record Linkage analysis
- Advance uses include facial recognition, DNA sequence similarity, fingerprinting, etc.
- Have been used in the analysis of sequences in poker and computer strategy games
- But NOT in the differentiation and ranking of human performance (assessment)
 - Many types: wikipedia.org/wiki/String_Metric
String Similarity for Assessment

- Jaccard Similarity Coefficient (or Jaccard Index, JAC)
 - Measure the similarity between two sample sets by dividing the size of their intersection by the size of their union
 \[
 JAC(A, B) = \frac{|A \cap B|}{|A \cup B|}
 \]
 - JAC value ranges from 0 (two completely different strings) to 1 (two identical strings)
 - Easily understood by nonprofessionals
(0% Similarity) 0 \leftarrow JAC \rightarrow 1 (100% Similarity)
Converting String to Bigrams

Example:

- String A \{12345\} \rightarrow \text{Bigrams} \{12, 23, 34, 45\}
- String B \{13452\} \rightarrow \text{Bigrams} \{13, 34, 45, 52\}
- |A \cap B| = |\{34, 45\}| = 2
- |A \cup B| = |\{12, 23, 34, 45, 13, 52\}| = 6
- \text{JAC} (A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{2}{6} = 0.333
Story-based Serious Games

Military-style objectives (Search and Rescue)

- Retrieve 5 Villagers
- Locate 1 Special Agent
- Report Mission Status

STEM-based Objectives (Chemical Reaction)

- Find the Correct Chemicals
- Locate Suitable Catalyst
- Perform Chemical Reactions
Competency may be measured using “observable course of actions” within serious game environments.

Depending on player’s course of actions (i.e., order of checkpoints visited), an action-sequence can be obtained for each player.

In our case,
- Action-sequences happen to start and end with 1 (due to mission giver)
- E.g., 12345671, 13456271, etc.
- Consider cases such as 134, 1567, etc.??
Player Ranking By JAC Values

<table>
<thead>
<tr>
<th>ID</th>
<th>Number/Identity</th>
<th>JAC Values</th>
<th>Level</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>Design/Testing Team</td>
<td>1</td>
<td>--</td>
<td>Real Expert</td>
</tr>
<tr>
<td>7</td>
<td>1 Player</td>
<td>1</td>
<td>1</td>
<td>Expert-rank</td>
</tr>
<tr>
<td>8</td>
<td>1 Player</td>
<td>0.57</td>
<td>2</td>
<td>Likely-Expert</td>
</tr>
<tr>
<td>9-14</td>
<td>6 Players</td>
<td>0.40</td>
<td>3</td>
<td>Average</td>
</tr>
<tr>
<td>15-18</td>
<td>4 Players</td>
<td>0.27</td>
<td>4</td>
<td>Below Average</td>
</tr>
<tr>
<td>19</td>
<td>1 Player</td>
<td>0.20</td>
<td>5</td>
<td>Below Average</td>
</tr>
<tr>
<td>20-28</td>
<td>9 Players</td>
<td>0.17</td>
<td>6</td>
<td>Below Average</td>
</tr>
<tr>
<td>29-33</td>
<td>5 Players</td>
<td>0.08</td>
<td>7</td>
<td>Below Average</td>
</tr>
<tr>
<td>34-37</td>
<td>4 Players</td>
<td>0</td>
<td>8</td>
<td>Non-Gamer</td>
</tr>
</tbody>
</table>
Findings

- Participants who self-identified as avid game players did not automatically score high on JAC.

- Only one player achieved Expert rank (JAC = 1)
 - Never played this game before but had prior game design experience — might explain competency in problem solving using serious game.

- Next best player (JAC = 0.57)

- The rest falls quickly below 0.5 towards 0
 - Performed poorly (low competency, expected)
Next Best Player

![Bar chart showing Jaccard Coefficient comparison between players and experts.](chart)

- **Jaccard Coefficient**:
 - 1 = Identical with Model Answer
 - 0 = Completely dissimilar from Model Answer

- **Original Membership**:
 - **Players**
 - **Experts**

- **Participants**:
 - Likely-Expert
 - Next Best Candidate
We use discriminant analysis with jackknife reclassification to further evaluate the classification accuracy using JAC, also known as leave-one-out cross-validation. Particularly useful for small samples where it is difficult to divide the entire data into training and validation datasets.

JAC did a nearly perfect job (97.3%) in reclassification, misclassifying only 2.7% (1 player) out of the total 37 observations.

The success rate was significantly better than the 50% expected by chance (p < 0.001).
By Chance?

- Simulated sample of 60 experts and 310 players achieve similar result.
- Jackknife success rate for simulated sample is 97.48% (with SD = .98%)
 - Recall Jackknife for actual data is 97.3%
- Better than expected by chance
Interesting Side Notes

Example: String C = {1 3}

- Drop out of network (did not complete game)
- Performance by “Time of completion” alone would therefore be erroneous
- JAC = 0 (not always)
- Hence, incomplete data need not be thrown away (conserve economy: little wastage)
Future Research

- Scenario in this paper depicts 1 model answer
 - All experts agree that there is only 1 solution
- What if the experts do not agree? Or if there are multiple model answer?
- How does String Similarity hold up to Time-of-Completion? (Which one is a better metric?)
Conclusion

- Researchers* have suggested that a data-driven approach and an evidence-centered design are much better assessment methods that will foster real adoption of serious games.

- Findings in this study suggest string similarity to be a viable performance assessment metric for serious games.

- Hope this will encourage others to look into finding appropriate performance metrics for SEGA in the future.

* [3, 33, 34, 36, 37] referenced in paper

Measuring the (Dis-)Similarity between Expert and Novice Behaviors as Serious Games Analytics.

Education and Information Technologies.

DOI: 10.1007/s10639-013-9263-y
LinkedIn & Research Gate

- Christian S Loh, Ph.D.
 Virtual Environment Lab (V-LAB)
 Southern Illinois University
 Carbondale, IL, USA
 csloh@siu.edu

- Yanyan Sheng, Ph.D.
 Dept of Educational Measurement & Statistics
 Southern Illinois University
 Carbondale, IL, USA