PERFORMANCE METRICS FOR SERIOUS GAMES: WILL THE (REAL) EXPERT PLEASE STEP FORWARD?

Loh, C. S. & Sheng, Y. (2013)

- Human Performance literature shows behavioral differences between experts and novices
- Experts make decisions differently from novices (many years of practice to achieve mastery)
- Competency is a demonstrable attribute based on a person's course of action in problem solving
- Telemetry: tracing people's actions and behaviors (as user-generated data) remotely for performance assessment (web navigation, animal movement)

Experts vs Novices

- Very well-studied phenomenon in T&L & psychology
- Behavioral indicators vary widely
 - Ranging from 'time-to-task completion' rate, to mental representations of knowledge, to gaze patterns in scanning for information
- Observable & Measurable competency changes
 - **\square** Novices \leftarrow Competent Users \rightarrow Experts
 - Novices follow rules (often blindly)
 - Experts (appear to) break/ignore rules at will (because they detect subtle cues that are not obvious to novices)

Serious Games

Serious games: designed to support knowledge acquisition and/or skill development \Box Entertainment \leftarrow Digital Games \rightarrow Serious No \leftarrow Performance Assessment \rightarrow Required □ ROI: Stakeholders (T&L industries) need "measurable evidence of training or learning" Gap in Literature: few know what to do Thus far, sell games but not assessment reports Industry have different criteria for assessment (really complicated if you are an educator)

Performance Metrics & Analytics

- □ Serious Games (for T&L) can provide training so that novices → competent users → experts
- □ To satisfy the needs of stakeholders (for ROI)
 - Need STANDARDIZED measurable Performance Metrics to quantify observable changes in competency
 - Identify potential metrics
 - Test for viability
 - Incorporate as SErious Games Analytics (SEGA)
 - A set of established performance metrics and industrial standards for measuring competency with SG

Considering Entertainment Games

- 'Just-for-Fun' mode
 - Why would you want to 'performance assess' me?
- Just for fun?
 - Burger eating competition, Drinking, Car race, etc.
 Fun → Competition (still fun?)

Different Kind of Games/Players

Considering Competitive Games

- Competition' mode: BEST players (in....)
- \square Best against self (ghost car) \rightarrow self improvement
 - Best Time (of completion)

 - Best Utility (of 'limited' resources)
 - Best Collector (of badges)

Best Strategy (Objective-Based)

- Combinations of Time, Route, Resources...
- Many combination
- To start examining the problem, we limit our scope to just the order of completion
 - If you need eggs, shower gel, and video game (how would you shop at Wal-Mart?)
 - Can include Time and Route (but not a must)
- Future: compared ORDER with TIME and/or ROUTE

Similarity in Degree of Competency

- Since competency is characterized by an observable course of actions taken during problem solving
- Are there differences between course of actions of experts vs novices?
- We compared how closely match the two sets of traces are against one another.

We calculated the Similarity Index for each player and identified individuals whose performances approach/match that of the experts.

Novice (0) \leftarrow Similarity Index \rightarrow (1) Experts

Logs, Trigger Events

- User-generated data can be collected using a variety of methods
- Information Trails (Loh, 2007), Game Telemetry (Zoeller, 2010)
 - Remote Locale where interaction occurs (online)
 - Event 'Listener'
 - Transmitter/Receiver
 - Home base for database storage and analysis
 - **\blacksquare** Multiple data points (snowballing effect \rightarrow massive)
- \Box Analytics \rightarrow add visualization (reporting purpose)

Information Trails

- Loh, C. S. (2013). Improving the Impact and Return of Investment of Game-Based Learning. International Journal of Virtual and Personal Learning Environments. 4(1): 1-15.
- Loh, C. S. (2012). Information Trails: In-process assessment for game-based learning. In D. Ifenthaler, D. Eseryel, & X. Ge (Eds). Assessment in game-based learning: Foundations, innovations, and perspectives. (pp.123-144) New York, NY: Springer. [Chapter 8]
- Loh, C. S. (2009). Researching and Developing Serious Games as Interactive Learning Instructions. International Journal of Gaming and Computer Mediated Simulations. 1(4): 1-19.

Route-based Performance Metrics

String Similarity

- Statistical method devised to determine if two strings/records are similar enough to be duplicates in Record Linkage analysis
- Advance uses include facial recognition, DNA sequence similarity, fingerprinting, etc.
- Have been used in the analysis of sequences in poker and computer strategy games
- But NOT in the differentiation and ranking of human performance (assessment)
 - Many types: wikipedia.org/wiki/String_Metric

String Similarity for Assessment

- Jaccard Similarity Coefficient (or Jaccard Index, JAC)
 - Measure the similarity between two sample sets by dividing the size of their intersection by the size of their union

 $JAC (A, B) = | A \cap B | / | A \cup B |$

JAC value ranges from 0 (two completely different strings) to 1 (two identical strings)
 ■ Easily understood by nonprofessionals
 (0% Similarity) 0 ← JAC → 1 (100% Similarity)

Converting String to Bigrams

Example:

- □ String A {12345} → Bigrams {12, 23, 34, 45}
- □ String B {13452} → Bigrams {13, 34, 45, 52}
- $\square |A \cap B| = |\{34, 45\}| = 2$
- $\square |A \cup B| = |\{12, 23, 34, 45, 13, 52\}| = 6$
- $\Box JAC (A, B) = | A \cap B | / | A \cup B |$

= 2 / 6= 0.333

Story-based Serious Games

Military-style objectives (Search and Rescue)

STEM-based Objectives (Chemical Reaction)

Obtaining 'Action Sequence'

- Competency may be measured using "observable course of actions" within serious game environments
- Depending on player's course of actions (i.e., order of checkpoints visited), an action-sequence can be obtained for each player
- In our case,
 - Action-sequences happen to start and end with 1 (due to mission giver)
 - **E**.g., 12345671, 13456271, etc.
- □ Consider cases such as 134, 1567, etc. ??

Player Ranking By JAC Values

ID	Number/Identity	JAC Values	Level	Ranking
1 - 6	Design/Testing Team	1		Real Expert
7	1 Player	1	1	Expert-rank
8	1 Player	0.57	2	Likely-Expert
9-14	6 Players	0.40	3	Average
15-18	4 Players	0.27	4	Below Average
19	1 Player	0.20	5	Below Average
20-28	9 Players	0.17	6	Below Average
29-33	5 Players	0.08	7	Below Average
34-37	4 Players	0	8	Non-Gamer

- Participants who self-identified as avid game players did not automatically score high on JAC.
- Only one player achieved Expert rank (JAC = 1)
 Never played this game before but had prior game design experience might explain competency in problem solving using serious game.
- \Box Next best player (JAC = 0.57)
- The rest falls quickly below 0.5 towards 0
 Performed poorly (low competency, expected)

Next Best Player

Classification Accuracy

- We use discriminant analysis with jackknife reclassification to further evaluate the classification accuracy using JAC
 - also known as leave-one-out cross-validation
 - Particularly useful for small samples where it is difficult to divide the entire data into training and validation datasets.
- JAC did a nearly perfect job (97.3%) in reclassification, misclassifying only 2.7% (1 player) out of the total 37 observations.
- The success rate was significantly better than the 50% expected by chance (p < 0.001).</p>

- Simulated sample of 60 experts and 310 players achieve similar result.
- Jackknife success rate for simulated sample is 97.48% (with SD = .98%)
 - Recall Jackknife for actual data is 97.3%
- Better than expected by chance

Interesting Side Notes

- Example: String $C = \{13\}$
- Drop out of network (did not complete game)
- Performance by "Time of completion" alone would therefore be erroneous
- \square JAC = 0 (not always)
- Hence, incomplete data need not be thrown away (conserve economy: little wastage)

Future Research

- Scenario in this paper depicts 1 model answer
 - All experts agree that there is only 1 solution
- What if the experts do not agree? Or if there are multiple model answer?
- How does String Similarity hold up to Time-of-Completion? (Which one is a better metric?)

Conclusion

- Researchers* have suggested that a data-driven approach and an evidence-centered design are much better assessment methods that will foster real adoption of serious games.
- Findings in this study suggest string similarity to be a viable performance assessment metric for serious games.
- Hope this will encourage others to look into finding appropriate performance metrics for SEGA in the future.

* [3, 33, 34, 36, 37] referenced in paper

Publication

- □ Loh, C. S., & Sheng, Y. Y. (online first, 2013).
- Measuring the (Dis-)Similarity between Expert and Novice Behaviors as Serious Games Analytics.
- Education and Information Technologies.
- DOI: 10.1007/s10639-013-9263-y

LinkedIn & Research Gate

Christian S Loh, Ph.D.

Virtual Environment Lab (V-LAB) Southern Illinois University Carbondale, IL, USA csloh@siu.edu Dept of Educational Measurement & Statistics Southern Illinois University Carbondale, IL, USA

□ Yanyan Sheng, Ph.D.